Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29.450
Filter
1.
Sci Rep ; 14(1): 10464, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714792

ABSTRACT

In order to investigate the failure modes and instability mechanism of fractured rock. Uniaxial compression tests were conducted on sandstone specimens with different dip angles. Based on rock energy dissipation theory and fractal theory, the energy evolution characteristics and fragmentation fractal characteristics in the process of deformation and failure of specimens were analyzed. The results show that the peak strength and elastic modulus of fractured rock mass are lower than those of intact samples, and both show an exponential increase with the increase of fracture dip angle. The energy evolution laws of different fracture specimens are roughly similar and can be classified into four stages based on the stress-strain curve: pressure-tight, elastic, plastic, and post-destructive. The total strain energy, elastic strain energy, and dissipated strain energy of the specimen at the peak stress point increased exponentially with crack inclination, and the dissipated strain energy and compressive strength conformed to a power function growth relationship. The distribution of the fragments after the failure of the fracture sample has fractal characteristics, and the fractal dimension increases with the increase of the fracture dip angle. In addition, the higher the compressive strength of the specimen, the greater the energy dissipation, the more serious the degree of fragmentation, and the greater the fractal dimension. The data fitting further shows that there is a power function relationship between the dissipated strain energy and the fractal dimension. The research results can provide a theoretical basis for the stability of rock mass engineering and structural deformation control.

2.
Nat Commun ; 15(1): 3850, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719864

ABSTRACT

The K+ uptake system KtrAB is essential for bacterial survival in low K+ environments. The activity of KtrAB is regulated by nucleotides and Na+. Previous studies proposed a putative gating mechanism of KtrB regulated by KtrA upon binding to ATP or ADP. However, how Na+ activates KtrAB and the Na+ binding site remain unknown. Here we present the cryo-EM structures of ATP- and ADP-bound KtrAB from Bacillus subtilis (BsKtrAB) both solved at 2.8 Å. A cryo-EM density at the intra-dimer interface of ATP-KtrA was identified as Na+, as supported by X-ray crystallography and ICP-MS. Thermostability assays and functional studies demonstrated that Na+ binding stabilizes the ATP-bound BsKtrAB complex and enhances its K+ flux activity. Comparing ATP- and ADP-BsKtrAB structures suggests that BsKtrB Arg417 and Phe91 serve as a channel gate. The synergism of ATP and Na+ in activating BsKtrAB is likely applicable to Na+-activated K+ channels in central nervous system.


Subject(s)
Adenosine Diphosphate , Adenosine Triphosphate , Bacillus subtilis , Bacterial Proteins , Potassium , Sodium , Adenosine Triphosphate/metabolism , Bacillus subtilis/metabolism , Sodium/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Potassium/metabolism , Crystallography, X-Ray , Adenosine Diphosphate/metabolism , Cryoelectron Microscopy , Binding Sites , Cation Transport Proteins/metabolism , Cation Transport Proteins/chemistry , Models, Molecular , Protein Binding
3.
Nat Commun ; 15(1): 3884, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719909

ABSTRACT

Only a minority of cancer patients benefit from immune checkpoint blockade therapy. Sophisticated cross-talk among different immune checkpoint pathways as well as interaction pattern of immune checkpoint molecules carried on circulating small extracellular vesicles (sEV) might contribute to the low response rate. Here we demonstrate that PD-1 and CD80 carried on immunocyte-derived sEVs (I-sEV) induce an adaptive redistribution of PD-L1 in tumour cells. The resulting decreased cell membrane PD-L1 expression and increased sEV PD-L1 secretion into the circulation contribute to systemic immunosuppression. PD-1/CD80+ I-sEVs also induce downregulation of adhesion- and antigen presentation-related molecules on tumour cells and impaired immune cell infiltration, thereby converting tumours to an immunologically cold phenotype. Moreover, synchronous analysis of multiple checkpoint molecules, including PD-1, CD80 and PD-L1, on circulating sEVs distinguishes clinical responders from those patients who poorly respond to anti-PD-1 treatment. Altogether, our study shows that sEVs carry multiple inhibitory immune checkpoints proteins, which form a potentially targetable adaptive loop to suppress antitumour immunity.


Subject(s)
B7-1 Antigen , B7-H1 Antigen , Extracellular Vesicles , Programmed Cell Death 1 Receptor , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Programmed Cell Death 1 Receptor/metabolism , Humans , B7-1 Antigen/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Animals , Mice , Cell Line, Tumor , Female , Neoplasms/immunology , Neoplasms/pathology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Immune Tolerance , Mice, Inbred C57BL , Male , Tumor Microenvironment/immunology
4.
Fish Shellfish Immunol ; 149: 109617, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38723876

ABSTRACT

Microbiome in the intestines of aquatic invertebrates plays pivotal roles in maintaining intestinal homeostasis, especially when the host is exposed to pathogen invasion. Decapod iridescent virus 1 (DIV1) is a devastating virus seriously affecting the productivity and success of crustacean aquaculture. In this study, a metagenomic analysis was conducted to investigate the genomic sequences, community structure and functional characteristics of the intestinal microbiome in the giant river prawn Macrobrachiumrosenbergii infected with DIV1. The results showed that DIV1 infection could significantly reduce the diversity and richness of intestinal microbiome. Proteobacteria represented the largest taxon at the phylum level, and at the species level, the abundance of Gonapodya prolifera and Solemya velum gill symbiont increased significantly following DIV1 infection. In the infected prawns, four metabolic pathways related to purine metabolism, pyrimidine metabolism, glycerophospholipid metabolism, and pentose phosphate pathway, and five pathways related to nucleotide excision repair, homologous recombination, mismatch repair, base excision repair, and DNA replication were significantly enriched. Moreover, several immune response related pathways, such as shigellosis, bacterial invasion of epithelial cells, Salmonella infection, and Vibrio cholerae infection were repressed, indicating that secondary infection in M. rosenbergii may be inhibited via the suppression of these immune related pathways. DIV1 infection led to the induction of microbial carbohydrate enzymes such as the glycoside hydrolases (GHs), and reduced the abundance and number of antibiotic-resistant ontologies (AROs). A variety of AROs were identified from the microbiota, and mdtF and lrfA appeared as the dominant genes in the detected AROs. In addition, antibiotic efflux, antibiotic inactivation, and antibiotic target alteration were the main antibiotic resistance mechanisms. Collectively, the data would enable a deeper understanding of the molecular response of intestinal microbiota to DIV1, and offer more insights into its roles in prawn resistance to DIVI infection.

5.
Am J Cancer Res ; 14(4): 1523-1544, 2024.
Article in English | MEDLINE | ID: mdl-38726263

ABSTRACT

Although sorafenib is the first-line therapeutic agent for advanced hepatocellular carcinoma (HCC), the development of drug resistance in HCC cells limits its clinical efficacy. However, the key factors involved in mediating the sorafenib resistance of HCC cells and the underlying mechanisms have not been elucidated. In this study, we generated sorafenib-resistant HCC cell lines, and our data demonstrate that HLA-F locus-adjacent transcript 10 (FAT10), a ubiquitin-like protein, is markedly upregulated in sorafenib-resistant HCC cells and that reducing the expression of FAT10 in sorafenib-resistant HCC cells increases sensitivity to sorafenib. Mechanistically, FAT10 stabilizes the expression of the PTEN-specific E3 ubiquitin ligase NEDD4 that causes downregulation of PTEN, thereby inducing AKT-mediated autophagy and promoting the resistance of HCC cells to sorafenib. Moreover, we screened the small molecule Compound 7695-0983, which increases the sensitivity of sorafenib-resistant HCC cells to sorafenib by inhibiting the expression of FAT10 to inhibit NEDD4-PTEN/AKT axis-mediated autophagy. Collectively, our preclinical findings identify FAT10 as a key factor in the sorafenib resistance of HCC cells and elucidate its underlying mechanism. This study provides new mechanistic insight for the exploitation of novel sorafenib-based tyrosine kinase inhibitor (TKI)-targeted drugs for treating advanced HCC.

6.
Aging (Albany NY) ; 162024 May 07.
Article in English | MEDLINE | ID: mdl-38728235

ABSTRACT

Renal cell carcinoma (RCC) is one of the most prevalent types of urological cancer. Exosomes are vesicles derived from cells and have been found to promote the development of RCC, but the potential biomarker and molecular mechanism of exosomes on RCC remain ambiguous. Here, we first screened differentially expressed exosome-related genes (ERGs) by analyzing The Cancer Genome Atlas (TCGA) database and exoRBase 2.0 database. We then determined prognosis-related ERGs (PRERGs) by univariate Cox regression analysis. Gene Dependency Score (gDS), target development level, and pathway correlation analysis were utilized to examine the importance of PRERGs. Machine learning and lasso-cox regression were utilized to screen and construct a 5-gene risk model. The risk model showed high predictive accuracy for the prognosis of patients and proved to be an independent prognostic factor in three RCC datasets, including TCGA-KIRC, E-MTAB-1980, and TCGA-KIRP datasets. Patients with high-risk scores showed worse outcomes in different clinical subgroups, revealing that the risk score is robust. In addition, we found that immune-related pathways are highly enriched in the high-risk group. Activities of immune cells were distinct in high-/low-risk groups. In independent immune therapeutic cohorts, high-risk patients show worse immune therapy responses. In summary, we identified several exosome-derived genes that might play essential roles in RCC and constructed a 5-gene risk signature to predict the prognosis of RCC and immune therapy response.

7.
Sci Immunol ; 9(95): eadj9730, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728414

ABSTRACT

Chimeric antigen receptor (CAR) T cell immunotherapy for the treatment of neurological autoimmune diseases is promising, but CAR T cell kinetics and immune alterations after treatment are poorly understood. Here, we performed single-cell multi-omics sequencing of paired cerebrospinal fluid (CSF) and blood samples from patients with neuromyelitis optica spectrum disorder (NMOSD) treated with anti-B cell maturation antigen (BCMA) CAR T cells. Proliferating cytotoxic-like CD8+ CAR T cell clones were identified as the main effectors in autoimmunity. Anti-BCMA CAR T cells with enhanced features of chemotaxis efficiently crossed the blood-CSF barrier, eliminated plasmablasts and plasma cells in the CSF, and suppressed neuroinflammation. The CD44-expressing early memory phenotype in infusion products was potentially associated with CAR T cell persistence in autoimmunity. Moreover, CAR T cells from patients with NMOSD displayed distinctive features of suppressed cytotoxicity compared with those from hematological malignancies. Thus, we provide mechanistic insights into CAR T cell function in patients with neurological autoimmune disease.


Subject(s)
Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Single-Cell Analysis , Humans , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/immunology , Autoimmunity/immunology , Neuromyelitis Optica/immunology , Neuromyelitis Optica/therapy , Female , Male , Adult , Middle Aged , Central Nervous System/immunology
8.
Microb Cell Fact ; 23(1): 123, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724968

ABSTRACT

BACKGROUND: Saccharomyces cerevisiae is an important microorganism in ethanol synthesis, and with sugarcane molasses as the feedstock, ethanol is being synthesized sustainably to meet growing demands. However, high-concentration ethanol fermentation based on high-concentration sugarcane molasses-which is needed for reduced energy consumption of ethanol distillation at industrial scale-is yet to be achieved. RESULTS: In the present study, to identify the main limiting factors of this process, adaptive laboratory evolution and high-throughput screening (Py-Fe3+) based on ARTP (atmospheric and room-temperature plasma) mutagenesis were applied. We identified high osmotic pressure, high temperature, high alcohol levels, and high concentrations of K+, Ca2+, K+ and Ca2+ (K+&Ca2+), and sugarcane molasses as the main limiting factors. The robust S. cerevisiae strains of NGT-F1, NGW-F1, NGC-F1, NGK+, NGCa2+ NGK+&Ca2+-F1, and NGTM-F1 exhibited high tolerance to the respective limiting factor and exhibited increased yield. Subsequently, ethanol synthesis, cell morphology, comparative genomics, and gene ontology (GO) enrichment analysis were performed in a molasses broth containing 250 g/L total fermentable sugars (TFS). Additionally, S. cerevisiae NGTM-F1 was used with 250 g/L (TFS) sugarcane molasses to synthesize ethanol in a 5-L fermenter, giving a yield of 111.65 g/L, the conversion of sugar to alcohol reached 95.53%. It is the highest level of physical mutagenesis yield at present. CONCLUSION: Our results showed that K+ and Ca2+ ions primarily limited the efficient production of ethanol. Then, subsequent comparative transcriptomic GO and pathway analyses showed that the co-presence of K+ and Ca2+ exerted the most prominent limitation on efficient ethanol production. The results of this study might prove useful by promoting the development and utilization of green fuel bio-manufactured from molasses.


Subject(s)
Calcium , Ethanol , Fermentation , Molasses , Potassium , Saccharomyces cerevisiae , Saccharum , Ethanol/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharum/metabolism , Calcium/metabolism , Potassium/metabolism
9.
Medicine (Baltimore) ; 103(19): e38008, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728519

ABSTRACT

Epidemiological and clinical studies have indicated a higher risk of nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM), implying a potentially shared genetic etiology, which is still less explored. Genetic links between T2DM and NAFLD were assessed using linkage disequilibrium score regression and pleiotropic analysis under composite null hypothesis. European GWAS data have identified shared genes, whereas SNP-level pleiotropic analysis under composite null hypothesis has explored pleiotropic loci. generalized gene-set analysis of GWAS data determines pleiotropic pathways and tissue enrichment using eQTL mapping to identify associated genes. Mendelian randomization analysis was used to investigate the causal relationship between NAFLD and T2DM. Linkage disequilibrium score regression analysis revealed a strong genetic correlation between T2DM and NAFLD, and identified 24 pleiotropic loci. These single-nucleotide polymorphisms are primarily involved in biosynthetic regulation, RNA biosynthesis, and pancreatic development. generalized gene-set analysis of GWAS data analysis revealed significant enrichment in multiple brain tissues. Gene mapping using these 3 methods led to the identification of numerous pleiotropic genes, with differences observed in liver and kidney tissues. These genes were mainly enriched in pancreas, brain, and liver tissues. The Mendelian randomization method indicated a significantly positive unidirectional causal relationship between T2DM and NAFLD. Our study identified a shared genetic structure between NAFLD and T2DM, providing new insights into the genetic pathogenesis and mechanisms of NAFLD and T2DM comorbidities.


Subject(s)
Diabetes Mellitus, Type 2 , Genome-Wide Association Study , Mendelian Randomization Analysis , Non-alcoholic Fatty Liver Disease , Polymorphism, Single Nucleotide , Humans , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/epidemiology , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/epidemiology , Genetic Predisposition to Disease , Linkage Disequilibrium , Genetic Pleiotropy , Quantitative Trait Loci
10.
J Phys Chem A ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733363

ABSTRACT

Geometric phase (GP) effects in chemical reactions are subtle quantum phenomena that are challenging to identify. In this work, we report a joint experimental and theoretical study of the H + HD → H2 + D reaction at a collision energy of 2.07 eV, which is far below the energy of the conical intersection of 2.53 eV. The rotationally state-resolved differential cross sections were measured by a crossed-beam experiment with the scheme of D-atom Rydberg tagging time-of-flight detection. Experimental angular distributions of three rotational states of H2 products exhibit notable variation near the backward scattering direction. Time-dependent quantum mechanics calculations (TDQMs) were carried out at the same collision energy, with and without the inclusion of GP. The experimental angular distributions are in good agreement with TDQM results with the inclusion of GP but do not agree with TDQM results without the inclusion of GP. This work demonstrates the existence of GP effects at energy far below the conical intersection.

11.
Environ Sci Technol ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709279

ABSTRACT

People of all ages consume salt every day, but is it really just salt? Plastic nanoparticles [nanoplastics (NPs)] pose an increasing environmental threat and have begun to contaminate everyday salt in consumer goods. Herein, we developed a combined surface enhanced Raman scattering (SERS) and stimulated Raman scattering (SRS) approach that can realize the filtration, enrichment, and detection of NPs in commercial salt. The Au-loaded (50 nm) anodic alumina oxide substrate was used as the SERS substrate to explore the potential types of NP contaminants in salts. SRS was used to conduct imaging and quantify the presence of the NPs. SRS detection was successfully established through standard plastics, and NPs were identified through the match of the hydrocarbon group of the nanoparticles. Simultaneously, the NPs were quantified based on the high spatial resolution and rapid imaging of the SRS imaging platform. NPs in sea salts produced in Asia, Australasia, Europe, and the Atlantic were studied. We estimate that, depending on the location, an average person could be ingesting as many as 6 million NPs per year through the consumption of sea salt alone. The potential health hazards associated with NP ingestion should not be underestimated.

12.
bioRxiv ; 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38712124

ABSTRACT

Antigenic assessments of SARS-CoV-2 variants inform decisions to update COVID-19 vaccines. Primary infection sera are often used for assessments, but such sera are rare due to population immunity from SARS-CoV-2 infections and COVID-19 vaccinations. Here, we show that neutralization titers and breadth of matched human and hamster pre-Omicron variant primary infection sera correlate well and generate similar antigenic maps. The hamster antigenic map shows modest antigenic drift among XBB sub-lineage variants, with JN.1 and BA.4/BA.5 variants within the XBB cluster, but with five to six-fold antigenic differences between these variants and XBB.1.5. Compared to sera following only ancestral or bivalent COVID-19 vaccinations, or with post-vaccination infections, XBB.1.5 booster sera had the broadest neutralization against XBB sub-lineage variants, although a five-fold titer difference was still observed between JN.1 and XBB.1.5 variants. These findings suggest that antibody coverage of antigenically divergent JN.1 could be improved with a matched vaccine antigen.

13.
Cancer Lett ; 592: 216924, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38718886

ABSTRACT

Oncolytic viruses (OVs) represent an emerging immunotherapeutic strategy owing to their capacity for direct tumor lysis and induction of antitumor immunity. However, hurdles like transient persistence and moderate efficacy necessitate innovative approaches. Metabolic remodeling has recently gained prominence as a strategic intervention, wherein OVs or combination regimens could reprogram tumor and immune cell metabolism to enhance viral replication and oncolysis. In this review, we summarize recent advances in strategic reprogramming of tumor and immune cell metabolism to enhance OV-based immunotherapies. Specific tactics include engineering viruses to target glycolytic, glutaminolytic, and nucleotide synthesis pathways in cancer cells, boosting viral replication and tumor cell death. Additionally, rewiring T cell and NK cell metabolism of lipids, amino acids, and carbohydrates shows promise to enhance antitumor effects. Further insights are discussed to pave the way for the clinical implementation of metabolically enhanced oncolytic platforms, including balancing metabolic modulation to limit antiviral responses while promoting viral persistence and tumor clearance.

14.
Sci Rep ; 14(1): 10763, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38730264

ABSTRACT

The association between cooking fuel and hearing loss still needs more research to clarify, and two longitudinal cohort studies were explored to find if solid fuel use for cooking affected hearing in Chinese adults. The data from Chinese Health and Retirement Longitudinal Survey (CHARLS) and Chinese Longitudinal Healthy Longevity Survey (CLHLS) were analyzed. Participants (older than 18) without hearing loss at baseline and follow-up visits were included, which were divided into clean fuel and solid fuel groups. Hearing loss rate was from follow-up visits (both in year 2011) until the recent one (year 2018 in CHARLS and 2019 in CLHLS). Cox regressions were applied to examine the associations with adjustment for potential confounders. Fixed-effect meta-analysis was used to pool the results. A total of 9049 participants (average age 8.34 ± 9.12 [mean ± SD] years; 4247 [46.93%] males) were included in CHARLS cohort study and 2265 participants (average age, 78.75 ± 9.23 [mean ± SD] years; 1148 [49.32%] males) in CLHLS cohort study. There were 1518 (16.78%) participants in CHARLS cohort and 451 (19.91%) participants in CLHLS cohort who developed hearing loss. The group of using solid fuel for cooking had a higher risk of hearing loss (CHARLS: HR, 1.16; 95% CI 1.03-1.30; CLHLS: HR, 1.43; 95% CI 1.11-1.84) compared with the one of using clean fuel. Pooled hazard ratio showed the incidence of hearing loss in the solid fuel users was 1.17 (1.03, 1.29) times higher than that of clean fuel users. Hearing loss was associated with solid fuel use and older people were at higher risk. It is advised to replace solid fuel by clean fuel that may promote health equity.


Subject(s)
Cooking , Hearing Loss , Humans , Male , Hearing Loss/epidemiology , Hearing Loss/etiology , Hearing Loss/chemically induced , Female , Aged , China/epidemiology , Middle Aged , Longitudinal Studies , Cohort Studies , Aged, 80 and over , Adult , Risk Factors
15.
Cancers (Basel) ; 16(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38730647

ABSTRACT

Triple-negative breast cancer (TNBC) presents a therapeutic challenge due to its complex pathology and limited treatment options. Addressing this challenge, our study focuses on the effectiveness of combination therapy, which has recently become a critical strategy in cancer treatment, improving therapeutic outcomes and combating drug resistance and metastasis. We explored a novel combination therapy employing Benzyl isothiocyanate (BITC) and Sorafenib (SOR) and their nanoformulation, aiming to enhance therapeutic outcomes against TNBC. Through a series of in vitro assays, we assessed the cytotoxic effects of BITC and SOR, both free and encapsulated. The BITC-SOR-loaded nanoparticles (NPs) were synthesized using an amphiphilic copolymer, which demonstrated a uniform spherical morphology and favorable size distribution. The encapsulation efficiencies, as well as the sustained release profiles at varied pH levels, were quantified, revealing distinct kinetics that were well-modeled by the Korsmeyer-Peppas equation. The NP delivery system showed a marked dose-dependent cytotoxicity towards TNBC cells, with an IC50 of 7.8 µM for MDA-MB-231 cells, indicating improved efficacy over free drugs, while exhibiting minimal toxicity toward normal breast cells. Furthermore, the NPs significantly inhibited cell migration and invasion in TNBC models, surpassing the effects of free drugs. These findings underscore the potential of BITC-SOR-NPs as a promising therapeutic approach for TNBC, offering targeted delivery while minimizing systemic toxicity.

16.
Cancers (Basel) ; 16(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38730662

ABSTRACT

Objective: The vast majority of gastrointestinal stromal tumors (GISTs) are driven by activating mutations in KIT, PDGFRA, or components of the succinate dehydrogenase (SDH) complex (SDHA, SDHB, SDHC, and SDHD genes). A small fraction of GISTs lack alterations in KIT, PDGFRA, and SDH. We aimed to further characterize the clinical and genomic characteristics of these so-called "triple-negative" GISTs. Methods: We extracted clinical and genomic data from patients seen at MD Anderson Cancer Center with a diagnosis of GIST and available clinical next generation sequencing data to identify "triple-negative" patients. Results: Of the 20 patients identified, 11 (55.0%) had gastric, 8 (40.0%) had small intestinal, and 1 (5.0%) had rectal primary sites. In total, 18 patients (90.0%) eventually developed recurrent or metastatic disease, and 8 of these presented with de novo metastatic disease. For the 13 patients with evaluable response to imatinib (e.g., neoadjuvant treatment or for recurrent/metastatic disease), the median PFS with imatinib was 4.4 months (range 0.5-191.8 months). Outcomes varied widely, as some patients rapidly developed progressive disease while others had more indolent disease. Regarding potential genomic drivers, four patients were found to have alterations in the RAS/RAF/MAPK pathway: two with a BRAF V600E mutation and two with NF1 loss-of-function (LOF) mutations (one deletion and one splice site mutation). In addition, we identified two with TP53 LOF mutations, one with NTRK3 fusion (ETV6-NTRK3), one with PTEN deletion, one with FGFR1 gain-of-function (GOF) mutation (K654E), one with CHEK2 LOF mutation (T367fs*), one with Aurora kinase A fusion (AURKA-CSTF1), and one with FANCA deletion. Patients had better responses with molecularly targeted therapies than with imatinib. Conclusions: Triple-negative GISTs comprise a diverse cohort with different driver mutations. Compared to KIT/PDGFRA-mutant GIST, limited benefit was observed with imatinib in triple-negative GIST. In depth molecular profiling can be helpful in identifying driver mutations and guiding therapy.

17.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732031

ABSTRACT

Skeletal muscle myogenesis hinges on gene regulation, meticulously orchestrated by molecular mechanisms. While the roles of transcription factors and non-coding RNAs in myogenesis are widely known, the contribution of RNA-binding proteins (RBPs) has remained unclear until now. Therefore, to investigate the functions of post-transcriptional regulators in myogenesis and uncover new functional RBPs regulating myogenesis, we employed CRISPR high-throughput RBP-KO (RBP-wide knockout) library screening. Through this approach, we successfully identified Eef1a1 as a novel regulatory factor in myogenesis. Using CRISPR knockout (CRISPRko) and CRISPR interference (CRISPRi) technologies, we successfully established cellular models for both CRISPRko and CRISPRi. Our findings demonstrated that Eef1a1 plays a crucial role in promoting proliferation in C2C12 myoblasts. Through siRNA inhibition and overexpression methods, we further elucidated the involvement of Eef1a1 in promoting proliferation and suppressing differentiation processes. RIP (RNA immunoprecipitation), miRNA pull-down, and Dual-luciferase reporter assays confirmed that miR-133a-3p targets Eef1a1. Co-transfection experiments indicated that miR-133a-3p can rescue the effect of Eef1a1 on C2C12 myoblasts. In summary, our study utilized CRISPR library high-throughput screening to unveil a novel RBP, Eef1a1, involved in regulating myogenesis. Eef1a1 promotes the proliferation of myoblasts while inhibiting the differentiation process. Additionally, it acts as an antagonist to miR-133a-3p, thus modulating the process of myogenesis.


Subject(s)
Cell Differentiation , Cell Proliferation , Muscle Development , Myoblasts , Peptide Elongation Factor 1 , Muscle Development/genetics , Peptide Elongation Factor 1/genetics , Peptide Elongation Factor 1/metabolism , Animals , Mice , Cell Proliferation/genetics , Cell Differentiation/genetics , Myoblasts/metabolism , Myoblasts/cytology , CRISPR-Cas Systems , Cell Line , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics
18.
Article in English | MEDLINE | ID: mdl-38734926

ABSTRACT

BACKGROUND: Oxidative stress has previously been shown to play a pivotal role in the pathogenesis of vascular calcification. In the present study, we aimed to investigate the association between the composite dietary antioxidant index (CDAI) and abdominal aortic calcification (AAC). METHODS: We conducted a cross-sectional study of United States adults using data from the 2013-2014 National Health and Nutrition Examination Survey. The CDAI was calculated from vitamins A, C, E, selenium, zinc, and caretenoid through two rounds of 24-h dietary recall interviews. AAC was assessed by a lateral dual-energy x-ray absorptiometry scan of the thoraco-lumbar spine. The association between CDAI and AAC was evaluated with weighted multivariable logistic regression. RESULTS: Overall, an unweighted 1081 participants were analyzed, including 110 with AAC and 971 without AAC. In the multivariable fully adjusted logistic regression model, CDAI was significantly associated with AAC (odds ratio = 0.89, 95% CI 0.81-0.98; P = 0.02). Compared with the lowest quartile, the highest quartile of CDAI was related to a 0.33-fold risk of AAC (95% CI 0.12-0.90; P = 0.03). Subgroup analysis showed that the significant association between CDAI and AAC was only observed in participants without hypertension (P for interaction = 0.002). CONCLUSION: A higher CDAI was associated with a lower prevalence of AAC among adults without hypertension in the US. Further large-scale prospective studies are required to analyze the protective role of the CDAI in AAC progression.

19.
J Hazard Mater ; 471: 134429, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38691929

ABSTRACT

The adsorption process efficiently removes per- and polyfluoroalkyl substances (PFAS) from water, but managing exhausted adsorbents presents notable environmental and economic challenges. Conventional disposal methods, such as incineration, may reintroduce PFAS into the environment. Therefore, advanced regeneration techniques are imperative to prevent leaching during disposal and enhance sustainability and cost-effectiveness. This review critically evaluates thermal and chemical regeneration approaches for PFAS-laden adsorbents, elucidating their operational mechanisms, the influence of water quality parameters, and their inherent advantages and limitations. Thermal regeneration achieves notable desorption efficiencies, reaching up to 99% for activated carbon. However, it requires significant energy input and risks compromising the adsorbent's structural integrity, resulting in considerable mass loss (10-20%). In contrast, chemical regeneration presents a diverse efficiency landscape across different regenerants, including water, acidic/basic, salt, solvent, and multi-component solutions. Multi-component solutions demonstrate superior efficiency (>90%) compared to solvent-based solutions (12.50%), which, in turn, outperform salt (2.34%), acidic/basic (1.17%), and water (0.40%) regenerants. This hierarchical effectiveness underscores the nuanced nature of chemical regeneration, significantly influenced by factors such as regenerant composition, the molecular structure of PFAS, and the presence of organic co-contaminants. Exploring the conditional efficacy of thermal and chemical regeneration methods underscores the imperative of strategic selection based on specific types of PFAS and material properties. By emphasizing the limitations and potential of particular regeneration schemes and advocating for future research directions, such as exploring persulfate activation treatments, this review aims to catalyze the development of more effective regeneration processes. The ultimate goal is to ensure water quality and public health protection through environmentally sound solutions for PFAS remediation efforts.

20.
Chemosphere ; 359: 142228, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38705407

ABSTRACT

Copper oxides are vital catalysts in facilitating the formation of polychlorinated thianthrenes/dibenzothiophenes (PCTA/DTs) through heterogeneous reactions in high-temperature industrial processes. Chlorothiophenols (CTPs) are the most crucial precursors for PCTA/DT formation. The initial step in this process is the metal-catalyzed production of chlorothiophenoxy radicals (CTPRs) from CTPs via dissociation reactions. This work combines density functional theory (DFT) calculations with ab initio molecular dynamics (AIMD) simulations to explore the formation mechanism of the adsorbed 2-CTPR from 2-CTP, with the assistance of CuO(111). Our study demonstrates that flat adsorption configurations of 2-CTP on the CuO(111) surface are more stable than vertical configurations. The CuO(111) surface acts as a strong catalyst, facilitating the dissociation of 2-CTP into the adsorbed 2-CTPR. Surface oxygen vacancies enhance the adsorption of 2-CTP on the CuO(111) surface, while moderately suppressing the dissociation of 2-CTP. More importantly, water molecules and surface hydroxyl groups actively promote the dissociation of 2-CTP. Specifically, water directly participates in the reaction through "water bridge", enabling a barrier-free process. This research provides molecular-level insights into the heterogeneous generation of dioxins with the catalysis of metal oxides in fly ash from static and dynamic aspects, providing novel approaches for reducing dioxin emissions and establishing dioxin control strategies.

SELECTION OF CITATIONS
SEARCH DETAIL
...